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Abstract — An alternative to ordinary least squares (OLS) regression model based on analytical solution is found to be quantile regression (QR) 
model. The procedure is well presented in this paper. Data Transformation and   Square Root Transformation Simulation by Monte Carlo was carried out. 
Quantreg package in R software was used to illustrate the various model fitness for quantile regression model.  The analysis shows that the best result 
was obtained from the square root of y transformation with an average error term (ϵi) of 0.9539, -0.0494, 0.0238, -0.5309 and -0.7544 for 10th, 25th, 
50th, 75th and 90th quantile respectively. From the results obtained, it shows that model transformation can greatly improve the result of quantile 
regression model.  
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1 Introduction 
Quantile regression model is naturally an extension of the 
linear-regression model. While the linear-regression model 
specifies the change in the conditional mean of the 
dependent variable associated with a change in the 
covariates, the quantile- regression model specifies changes 
in the conditional quantile. Since any quantile can be used, it 
is possible to model any predetermined position of the 
distribution. Thus, researchers can choose positions that are 
tailored to their specific inquiries 
However, if multiple quantiles can be modeled, it is possible 
to achieve a more complete understanding of how the 
dependent distribution is affected by covariates, including 
information about shape change. According to [1] expected 
error term of multiple quantile regression can be improved 
by transforming the response variable. Also [2] uses the 
relationship between variances and means over several 
groups to find the appropriate transformation for the study 
data which makes the variance independent of the mean. [2] 
procedure for determining the appropriate transformation is 
to determine the coefficient (𝛽𝛽) of regression of natural 
logarithm of group standard deviation (𝜎𝜎�𝑖𝑖) on the natural 
logarithm of group average ��̅�𝑥𝑖𝑖,𝑖𝑖=1,2,−−−𝑚𝑚�. He explained that 
the most popular and common transformations are the 
power of transformation such as: �𝑥𝑥𝑡𝑡 , 𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑋𝑋𝑡𝑡, 1

𝑋𝑋𝑡𝑡� , 1
�𝑋𝑋𝑡𝑡� , 

1
𝑋𝑋2

𝑡𝑡
� , 𝑋𝑋2

𝑡𝑡. Iwueze et’al (2011) stated that selecting the best 
transformation can be a complex issue and the usual 
statistical technique used is to estimate both the 
transformation and the required model for the transformed 
𝑥𝑥𝑡𝑡 at the same time.  Arshad et’al (2016) empirically analyzed 
the monthly earning distribution of Pakistan using 
logarithm transformation, Therefore, aim of this study, is to 
investigate appropriate power transformation methods for 
quantile regression model, the study will specifically the 

study will assess the best transformation fit of the model 
based on some selected power transformations, assess the 
impact of selected operational covariates at different 
locations of the distribution on the response variable and 
Conduct diagnostic tests on the suggested model.  
This study will apply the five powers of transformation 
stated by [2] on the response variable to ascertain which the 
power of transformations that will produce the least 
expected error term.  
1.1 Statement of hypothesis 
𝐻𝐻0: 𝛽𝛽𝑖𝑖(𝜏𝜏) =  0,    there is no significant difference in the slop 

patterns of the different quantiles 
𝐻𝐻1 :𝛽𝛽𝑖𝑖(𝜏𝜏)  ≠  0, there is a significant difference in the slop 

patterns of the different quantiles. . 
2 Methodology 
This paper investigates the best power transformation for 
multiple quantile regression model. The data were 
generated using Monte Carlo Simulation technique from the 
data of Annual salaries, income and wages of Health 
workers in Nigeria. The generated data shall be analyzed 
using transformed multiple quantile regression Model. The 
statistical software to be used in the analysis will be quantreg 
package in R Software.  
2.1 Linear Quantile Regression Model 
If we consider the i.i.d sample of 𝑦𝑦1,−− −𝑦𝑦𝑛𝑛, the 
unconditional sample mean can be defined as the solution to 
the problem of minimization a sum of squared residual  
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Hence the sample median 𝜉𝜉 is the minimizer of the sum of 
absolute error loss or deviations. 
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To see why median can be define as a minimization problem, 
it can be written as: 
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Differentiating with respect to ξ and setting the partial 
derivative to zero will lead to the solution for the 
minimization problem. The partial derivative of the first 
term is: 
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And any partial derivative of the second term is: 
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Combining these two partial derivatives lead to: 
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By setting 2𝐹𝐹(𝜉𝜉)  −   1 =   0, we solve for the value of  𝐹𝐹(𝜉𝜉)  
= 1
2
, that is, the median, to satisfy the minimization problem.  

For the general 𝜏𝜏𝜏𝜏ℎ sample quantile ξ(𝜏𝜏), which is the 
analogue of 𝜌𝜌(𝜏𝜏), may be formulated as the solution of the 
optimization problem 

 

( ) ( )
1

min
n

i
i

y
ξ

ρτ ξ ρτ ξ
∈ℜ =

= −∑   (7)  

Repeating the above argument for quantiles, the partial 
derivative for quantiles corresponding to equation (7) 
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We set the partial derivative F(𝜉𝜉) −  𝜌𝜌 = 0 and solve for the 
value of F(𝜉𝜉) −  𝜌𝜌 that satisfies the minimization problem. (8) 
is illustrated thus 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Just as the unconditional sample mean in (1) minimizes the 
sum of square residuals (error lose), the conditional sample 
mean also minimizes the sum of square residual by replacing 
the scalar 𝜇𝜇 by 𝜇𝜇(𝑥𝑥𝑖𝑖 ,𝛽𝛽), the estimate of the conditional mean 
function 𝐸𝐸[𝑌𝑌/𝑥𝑥] is obtained 
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This can be proceeded in the same way in quantile 
regression. to obtain an estimate of the conditional median 
function, the scalar ξ in equation (2) is replaced by the 
parametric function 𝜉𝜉(𝑥𝑥𝑖𝑖 ,𝛽𝛽): 
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Fig.1 Quantile Regression 𝜌𝜌 
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To obtain the estimates of the other conditional quantile 
function the conditional quantile is considered and the 
absolute values is replace by 𝜌𝜌𝜏𝜏(. ) : 
 

( ) ( )( )
1
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n
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i
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ξ
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= −∑   (11) 

Minimizing (11) results in a quantile regression model. The 
resulting minimization problem of (11), when 𝜉𝜉�𝑥𝑥𝑖𝑖 ,𝛽𝛽(𝜏𝜏)� is 
formulated as a linear function of the parameters can be 
solved very efficiently by linear programming method. The 
progression of ideas that led to (11) motivated the original 
quantile regression model presented in [6]. 
2.2 Model Specification 
Following [6] and [7], our proposed model will take the 
form: 
 

( ) ( ) ( )
0 i i iZ xτ τ ττ β β ε= +   (12) 

 
   

Where 
k = number of covariates 
Z = a transformed vector containing n observations of Health 

Workers Allowances, ie the transformed response 
variable (transformed 𝑌𝑌𝑡𝑡) 

𝛽𝛽 = a vector containing 16 coefficients to be estimated 
𝜀𝜀= a classical error terms 
𝜏𝜏 = Specified quantiles of Health Workers Annual 

Allowances. This research examines the following 
quantiles:  0.1, 0.25, 0.5, 0.75, 0.9 

𝑋𝑋 = an (3000) x 15 matrix of the covariates 
And we used the sample sizes: 𝑛𝑛 = 3000 
 
2.3         Coefficient of determination 
The goodness of fit according to [4] will be measured in a 
manner that is consistent with this criterion. But [8] 
suggested measuring goodness of fit by comparing the sum 
of weighted distances for the model of interest with the sum 
in which only the intercept parameter appears.  
Let 𝑉𝑉1(𝑝𝑝) be the sum of weighted distance for the full 𝑝𝑝𝑡𝑡ℎ 
quantile regression model, 
Let 𝑉𝑉0(𝑝𝑝) be the sum of weighted distance for the model that 
includes only a constant term. Therefore, using the one 
covariate model 
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For the model that only includes a constant term, the fitted 
constant is the sample 𝑝𝑝𝑡𝑡ℎ quantile 𝑄𝑄�(𝑝𝑝) for the sample 
𝑦𝑦1, … … … .𝑦𝑦𝑛𝑛 the goodness of fit is then defined as 
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Since 𝑉𝑉0(𝑝𝑝) and 𝑉𝑉1(𝑝𝑝) are nonnegative, R(p) is at most 1. 
Also, because the sum of weighted distance is minimized for 
the full-fitted model, 𝑉𝑉1(𝑝𝑝) is never greater than 𝑉𝑉0(𝑝𝑝), so 
R(p) is greater than or equal to zero. Thus, R(p) is within 
range of [0,1], a larger R(p) indicates a better model fit. The 
R(p) defined above allows for comparison of a fitted model 
with any number of covariates beyond the intercept term to 
model in which only the intercept term is present. This is the 
restricted form of a goodness-of-fit introduced by [8] for 
nested models.  
3 Simulated Data set for Quantile Regression 
Model:  
From the results of ‘Individual Distribution Identification 
tool’ of the Minitab software, Normal distributions was 
found to fit the variables under study. To simulate the data, 
quantile function of normal distribution function (probit 
function) was derive by equating the CDF to p and 
theoretically solve for x. Probability Density Function of a 
normal distribution function is given as 

𝑃𝑃(𝑥𝑥) =  
1

𝜎𝜎√2𝜋𝜋
𝑒𝑒
− (𝑥𝑥− 𝜇𝜇)2

�2𝜎𝜎2�                                                        (15)  

Let the Cumulative Density Function (CDF) be denoted by F 

∴    𝐹𝐹     =     � 𝑝𝑝(𝑥𝑥)𝑑𝑑𝑥𝑥                                                   (16)
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This is proceeded by deriving the probit function 
theoretically as: 

𝐹𝐹 =   
1
2 �
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𝑒𝑒𝑒𝑒𝑒𝑒 �
𝑥𝑥 −   𝜇𝜇

𝜎𝜎�√2
�    =    2𝐹𝐹 −   1 

𝑥𝑥 −   𝜇𝜇

𝜎𝜎�√2
  =   𝑒𝑒𝑒𝑒𝑒𝑒−1(2𝐹𝐹 −   1) 

𝑥𝑥 −   𝜇𝜇   =    𝜎𝜎�√2 𝑒𝑒𝑒𝑒𝑒𝑒−1(2𝐹𝐹 −   1) 

𝑥𝑥   =     𝜇𝜇 +   𝜎𝜎�√2 𝑒𝑒𝑒𝑒𝑒𝑒−1(2𝐹𝐹 −   1) 
With 𝜇𝜇  =    0  𝑎𝑎𝑛𝑛𝑑𝑑   𝜎𝜎   =    1  

𝑥𝑥   =     �√2 𝑒𝑒𝑒𝑒𝑒𝑒−1(2𝐹𝐹 −   1),   𝑝𝑝 ∈    (0, 1)                        (18) 
Where  

                      𝑥𝑥 = 𝑝𝑝𝑒𝑒𝑙𝑙𝑝𝑝𝑝𝑝𝜏𝜏 𝑒𝑒𝑓𝑓𝑛𝑛𝑓𝑓𝜏𝜏𝑝𝑝𝑙𝑙𝑛𝑛  
                  𝑒𝑒rf  =  the error function 
F = Cumulative Density Function (CDF) 

Following the derivation of probity function, Monte Carlo 
simulation will then be applied on the derived function to 
generate sample size of 3000 on each variable 𝑥𝑥𝑖𝑖  
3.1 Results and Discussion 
The result of the model transformation was presented in 
table 1, expected error term of different models of the 
median regression where compared together with the other 
quantiles,  

 

 

 

 

 

 
 
from the results of the expected error term, log 
transformation seems to has significantly improved the 
result of the model having the expected error term of -0.0196 
for the median regression, this is followed by the result of 
square root of y transformation with the expected error term 
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of 0.0238 for its median regression. y- squared 
transformation shows a significant retardation in all the 
quantiles including the median regression that is, its 
expected error term is 6907.125; the result of the inverse of y-
squared transformation shows a more improved results of 
expected error terms in all the quantile than the five other 
model transformation with the result of the  expected error 

term of the median regression as -0.0005 but surprisingly the 
expected error term of the 75th quantile seems to have more 
improved result than the expected error term of the median 
regression which make the result spurious. Appendix 1 
shows the graphs of the expected value plotted against the 
actual value. 

 
Table 1:Mean Residual of the Transformed Quantile  
Regression Model 

                        Quantile  
Transf. 
Model 

.10 .25 .50 .75 .90 

Log of y. 0.1596 0.0319 -0.0196 -0.4734 -0.0973 
Sqrt of y T 0.9539 -0.0494 0.0238 -0.5309 -0.7544 
Inverse of 
Sqrt of y T 

0.2646 -0.0581 0.2096 0.1705 0.3199 

Inverse of 
y  

0.3820 0.5598 0.2773 0.0063 0.0123 

Inverse of 
y sqrd  

0.0005 0.0003 -0.0005 -0.0027 -0.0067 

y sqrd  210104. -2302894 6907.12 -118156. -217223 
Psuado R 0.9987 0.9997 0.9999 0.9998 0.9985 

 

Graph of Log transformation shows that the estimated data 
may be partially correlated with the actual data, the graph of 
the square root of y transformation shows a more perfect 
correlation between the estimated value and the actual 
value. Both the graph of the estimated data and the actual 
data for the inverse of square root of y transformation and y-
squared transformation show an imperfect correlation. 
While the graphs of the inverse of y and the inverse of the 
square root of y show no correlation between the estimated 
data and the actual data. From the results of the graphs, it 
can be suggested that the model of the results of log of y 
transformation and the inverse of y-squared transformation 
are more of spurious results suggesting that the best model 
transformation may be the square root of y transformation. 

 

Table 2: Coefficient and p-value of Square Root Transformed Model 

          0.10           0.25          0.50          0.75          0.90 
 Co Value P(>|t

| 
Coe v P(>|t

| 
Coe v P(>|t

| 
Coe v P(>|t

| 
Coe v P(>|t|) 

𝛽𝛽0 -180.9 0.00 -161.89 0.00 -122.8 0.00 -13.20 0.30 -15.60 0.02 
𝛽𝛽1 -0.043 0.00 -0.0274 0.00 -0.019 0.00 0.001 0.81 -0.023 0.00 
𝛽𝛽2 -0.018 0.00 -0.0083 0.00 -0.001 0.55 0.004 0.08 0.009 0.00 
𝛽𝛽3 -0.047 0.00 -0.0373 0.00 -0.029 0.00 -0.014 0.00 -0.024 0.00 
𝛽𝛽4 0.0350 0.00 0.0268 0.00 0.0217 0.00 0.029 0.00 0.026 0.00 
𝛽𝛽5 0.0209 0.00 0.0226 0.00 0.0234 0.00 0.018 0.00 0.008 0.00 
𝛽𝛽6 -0.012 0.00 -0.0138 0.00 -0.011 0.00 -0.004 0.00 0.001 0.27 
𝛽𝛽7 -0.004 0.00 -0.0067 0.00 -0.008 0.00 -0.006 0.00 0.000 0.77 
𝛽𝛽8 0.0049 0.00 0.0053 0.00 0.0049 0.00 0.003 0.00 0.004 0.00 
𝛽𝛽9 0.0036 0.00 0.0033 0.00 0.0020 0.00 -0.000 0.44 -0.000 0.44 
𝛽𝛽11 -0.004 0.00 -0.0045 0.00 -0.004 0.00 -0.004 0.00 -0.000 0.58 
𝛽𝛽12 0.0117 0.00 0.0065 0.00 0.0040 0.00 0.000 0.88 0.002 0.00 
𝛽𝛽13 -0.009 0.00 -0.0071 0.00 -0.008 0.00 -0.008 0.00 -0.004 0.00 
𝛽𝛽14 0.0042 0.00 0.0051 0.00 0.0060 0.00 0.004 0.00 0.004 0.00 
𝛽𝛽15 0.0062 0.00 0.0052 0.00 0.0043 0.00 0.002 0.00 -0.003 0.00 
𝛽𝛽16 0.0002 0.51 0.0009 0.00 0.0004 0.01 0.000 0.05 0.000 0.63 
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       Table 3: Joint Test of Equality of Slops 

Joint Test Df R Df F Value 𝑃𝑃𝑒𝑒(> 𝐹𝐹) 
0.10 & 0.90 15 5985 318.23 2.2e-16*** 
0.25 & 0.75 15 5985 75.869 2.2e-16*** 

 

The results of the p-values in Table 2, show that all the 
coefficient values are all significant expect for 
𝑥𝑥15 𝑝𝑝𝑛𝑛 𝜏𝜏ℎ𝑒𝑒 10𝜏𝜏ℎ  quantile and 𝑥𝑥2 in the 50th quantile also 
𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥9, 𝑥𝑥11 𝑎𝑎𝑛𝑛𝑑𝑑 𝑥𝑥15 in the 75𝜏𝜏ℎ 𝑞𝑞𝑓𝑓𝑎𝑎𝑛𝑛𝜏𝜏𝑝𝑝𝑙𝑙 and 𝑥𝑥6, 𝑥𝑥7, 𝑥𝑥9, 𝑥𝑥10 and 
𝑥𝑥15 in the 90th quantile. The result of the Joint test for equality 
of slopes in Table 3 shows a significant difference in the slop 
of the 10th and 90th quantiles and the 25th and 75th quantiles 
also a significantly difference in their slop and in fact the 10th, 
25th, 50th, 75th and 90th quantile, significantly follow different 
slope pattern. Also, as shown in Table.2, while the covariates 
𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥6, 𝑥𝑥7, 𝑥𝑥10 and 𝑥𝑥12 of the 10th, 25th and 50th quantile 
show that they negatively impact on the response variable, 
the covariates of 𝑥𝑥4, 𝑥𝑥5, 𝑥𝑥7, 𝑥𝑥8, 𝑥𝑥9, 𝑥𝑥11, 𝑥𝑥13, 𝑥𝑥14, and 𝑥𝑥15 have 
positive impact on the response variable. Judging from the 
75th and 90th quantile, while the covariates 𝑥𝑥3, 𝑥𝑥6, 𝑥𝑥7, 𝑥𝑥9, 𝑥𝑥10, 
and 𝑥𝑥11 show that they negatively impact on the response 
variable. The covariates 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥4, 𝑥𝑥5, 𝑥𝑥8, 𝑥𝑥13 and 𝑥𝑥14 have 
positive impact on the response variable. 𝑥𝑥11, and 𝑥𝑥15 of the 
75th and 90th quantile did not show any significant impact on 
the response variable. 
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